Fuzzy Gaussian Mixture Models

نویسندگان

  • Zhaojie Ju
  • Honghai Liu
چکیده

In this paper, in order to improve both the performance and the efficiency of the conventional Gaussian Mixture Models (GMMs), generalized GMMs are firstly introduced by integrating the conventional GMMs and the active curve axis GMMs for fitting non-linear datasets, and then two types of Fuzzy Gaussian Mixture Models (FGMMs) with a faster convergence process are proposed based on the generalized GMMs, inspired from the mechanism of Fuzzy C-means (FCMs) which introduces the degree of fuzziness on the dissimilarity function based on distances. One is named as probability based FGMMs defining the dissimilarity as the multiplicative inverse of probability density function, and the other is distance based FGMMs which define the dissimilarity function focusing the degree of fuzziness only on the distances between points and component centres. Different from FCMs, both of the proposed dissimilarity functions are based on the exponential function of the distance. The FGMMs are compared with the conventional GMMs and the generalized GMMs in terms of the fitting degree and convergence speed. The experimental results show that the proposed FGMMs not only possess the nonlinearity to fit datasets with curve manifolds but also have a much faster convergence process saving more than half computational cost than GMMs’. & 2011 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Gaussian mixture models for speaker recognition

A fuzzy clustering based modification of Gaussian mixture models (GMMs) for speaker recognition is proposed. In this modification, fuzzy mixture weights are introduced by redefining the distances used in the fuzzy c-means (FCM) functionals. Their reestimation formulas are proved by minimising the FCM functionals. The experimental results show that the fuzzy GMMs can be used in speaker recogniti...

متن کامل

Network Anomaly Detection using Fuzzy Gaussian Mixture Models

Fuzzy Gaussian mixture modeling method is proposed in this paper for network anomaly detection. A mixture of Gaussian distributions was used to represent the network data in multi-dimensional feature space. Gaussian parameters were estimated using fuzzy c-means estimation. The method was tested with the KDD Cup data set. Experimental results have shown that the proposed method is more effective...

متن کامل

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

Modeling of Dynamic Backgrounds by Type - 2 Fuzzy Gaussian Mixture Models

—Gaussian Mixture Models (GMMs) are the most popular techniques in background modeling but present some limitations when some dynamic changes occur like camera jitter, illumination changes, movement in the background. Furthermore, the GMM are initialized using a training sequence which may be noisy and/or insufficient to model correctly the background. All these critical situations generate fal...

متن کامل

Cluster-Weighted Modeling as a basis for Fuzzy Modeling

The Cluster-Weighted Modeling (CWM) is emerging as a versatile tool for modeling dynamical systems. It is a mixture density estimator around local models. To be specific, the input regions together with output regions are treated to be Gaussian serving as local models. These models are linked by a linear or non-linear function involving the mixture of densities of local models. The present work...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition

دوره 45  شماره 

صفحات  -

تاریخ انتشار 2012